A NEW parallel algorithm for COMPUTING Minimum Spanning Tree

           M. I. Moussa1 and E. M. Badr2 

1 Computer Science Department,Faculty of Computer Science and Informatics, Benha University, Benha, Egypt.

moussa_6060@yahoo.com
2 Scientific Computing Department, Faculty of Computer Science and Informatics, Benha University, Benha, Egypt.

badrgraph@gmail.com
Abstract

Computing the minimum spanning tree of the graph is one of the fundamental computational problems. In this paper, we present a new parallel algorithm for computing the minimum spanning tree of an undirected weighted graph with 
[image: image1.wmf]n

vertices and 
[image: image2.wmf]m

edges. This algorithm uses the cluster techniques to reduce the number of processors by fraction 
[image: image3.wmf] 1/()

 

fn

and the parallel work by the fraction O (
[image: image4.wmf]1log(())

fn

), where 
[image: image5.wmf] ()

fn

is an arbitrary function.  In the case
[image: image6.wmf] ()1

fn

=

, the algorithm runs in logarithmic-time and use super linear work on EREWPRAM model. In general, the proposed algorithm is the simplest one.

Keywords

Minimum spanning tree, Parallel algorithm, Cluster techniques 
2. INTRODUCTION

The problem of determining a minimum spanning tree in parallel is the one major issue which has been the focus of much research. Here is a brief summary of related results. In 1979 D. H. Chandra, and D. V. Sarwate [1] presented a parallel deterministic algorithm for graphs with n vertices and m edges, that runs in O (
[image: image7.wmf]2

logn

) time using 
[image: image8.wmf]nlogn

2

 processors on the CREW model. In 1982, F. Chin, J. Lam, and I. Chen [3] gave a parallel deterministic algorithm, that runs in O (
[image: image9.wmf]2

logn

) time using 
[image: image10.wmf]22

nlogn

 processors Thus their algorithm achieves linear speed-up when the input graph is a complete graph. However, it is not very work-efficient for spare graphs. In 1982 Y. Shiloach and U. Vishkin [4] improved the result to O(
[image: image11.wmf]logn

) time and O(
[image: image12.wmf]mn

+

) processors on the CRCW model R. Cole and U. Vishkin [7] presented the best deterministic CRCW parallel MST and connectivity algorithms that require O(
[image: image13.wmf]log

n

) time and 
[image: image14.wmf]O((m+ n)a(m, n)/ log n)

 processors. Recently in 1999 K. W. Chong, Yijie Han, and Tak W. Lam [12] presented a new approach for finding the minimum spanning trees that runs in O(
[image: image15.wmf]logn

) time using 
[image: image16.wmf]mn

+

processors on EREW PRAM. Thus their algorithm as R. Cole and U. Vishkin algorithm all use super-linear work. There are somewhat simpler logarithmic time linear expected work randomized minimum spanning tree algorithms, which have been successfully analyzed by R. Cole, P. N. Klein and R. E. Tarjan [10]. They improved the running time
[image: image17.wmf]*

logn

O(2log n)

 

 of their previous work [8] to O (
[image: image18.wmf]logn

).  Their algorithms based on the sequential randomized linear-time algorithm to find MST which has been discovered by P. N. Klein, D. R. Karger and R. E. Tarjan [9].  In 2005 David A. Bader and Guojing Cong [2] gave a new practical parallel minimum spanning tree algorithm with implementation on SMPs. In 2005 Moussa [14] presented another algorithm for finding the minimum spanning trees that runs in   O (
[image: image19.wmf]logn

) time using 
[image: image20.wmf]m+n

processors on EREW PRAM. In this paper we improve our result [14] by presenting a practical parallel algorithm on EREW PRAM model for computing MST by reducing the number of used processors. This algorithm can be has a practical application, where it can use a limited number of processors which does not depend on the number of vertices in the graph.  At the same time, our algorithm is considered the best one among all the parallel deterministic algorithms presented in this area because it is simpler and it resumes lower parallel cost. The remainder of this paper is organized as follows. In section 2 we choose the parallel model of computation. Section 3 gives some assumptions and definitions related with the minimum spanning trees.  In section 4, we present and discuss the parallel algorithm for solving MST problem. Section 5 discusses the parallel running time and the number of used processors. Section 6 is the conclusion of this research.

3. The Model

We let an EREW PRAM model employs 
[image: image21.wmf]O (n f(n))

 

 processors where n is the number of vertices and m is the number of edges in the given graph
[image: image22.wmf] ,

G

 each processor able to perform the usual computation of a sequential machine using some fixed amount of local memory. The processors communicate through a shared global memory to which all are connected. The processor can access data computed by another processor and stored in the shared memory in constant time.

4. Assumptions and Definitions

Given a graph
[image: image23.wmf] 

G

with
[image: image24.wmf] n

vertices and m edges, we assume that the input graph G is given in the form of adjacency lists, where every vertex v has a linked list 
[image: image25.wmf]()

Lv

of incident edges
[image: image26.wmf](,)

vw

. For instance, if 
[image: image27.wmf]e

 = 
[image: image28.wmf](,)

uv

 is an edge in
[image: image29.wmf] 

G

, then 
[image: image30.wmf]e

 appears in the adjacency list of  
[image: image31.wmf]u

and
[image: image32.wmf] 

v

. We call each copy of 
[image: image33.wmf]e

 as the mate of the other. In order to differentiate between them we use the notations 
[image: image34.wmf](,)

uv

and 
[image: image35.wmf](,)

vu

to indicate that the edge originates from u and v respectively. The weight of
[image: image36.wmf] 

e

, which can be any integer value, is denoted
[image: image37.wmf]()

we

. The proposed algorithm can be implemented for a graph in which the weights of all edges are distinct, or there are some different edges that have the same weights. We therefore say that the input graph
[image: image38.wmf] 

G

 may have a unique minimum spanning tree, or more than one minimum spanning tree. The minimum spanning tree will be referred to as 
[image: image39.wmf] 

G

T

 throughout this paper. We also assume that 
[image: image40.wmf] 

G

 is an undirected connected graph and consists of only one component. Let 
[image: image41.wmf]12

{, , . . . , }

t

FTTT

=

 be an arbitrary set of sub-trees of
[image: image42.wmf] 

G

. If a tree 
[image: image43.wmf]i

T

contains no edge incidents on a vertex
[image: image44.wmf] 

v

, then 
[image: image45.wmf]v

forms a tree. Consider any edge 
[image: image46.wmf](, )

euvG

=Î

and tree
[image: image47.wmf] .

i

TF

Î

. If both vertex 
[image: image48.wmf]u

 and vertex 
[image: image49.wmf]v

 belong to 
[image: image50.wmf]i

T

 then 
[image: image51.wmf]e

is called an internal edge of
[image: image52.wmf]i

T

; if only one vertex of {
[image: image53.wmf],

uv

} belongs to
[image: image54.wmf]i

T

, then 
[image: image55.wmf]e

 is called an external edge. 
[image: image56.wmf]F

is said to be a 
[image: image57.wmf]k

−forest if each tree 
[image: image58.wmf] 

i

TF

Î

has at least 
[image: image59.wmf]k

 vertices. The tree 
[image: image60.wmf] 

ji

TT

¹

is adjacent to 
[image: image61.wmf]i

T

 if there is an edge 
[image: image62.wmf]e

=
[image: image63.wmf](,)

uv

, 
[image: image64.wmf], 

ij

uTvT

ÎÎ

. If 
[image: image65.wmf]j

T

is adjacent to
[image: image66.wmf]i

T

, then the best edge from 
[image: image67.wmf]i

T

 to 
[image: image68.wmf]j

T

 is the minimum cost 
[image: image69.wmf]e

=
[image: image70.wmf](,)

uv

,
[image: image71.wmf], 

.

ij

uTvT

ÎÎ

 For every tree 
[image: image72.wmf] 

i

TF

Î

the linked list of 
[image: image73.wmf]i

T

 is the set of all best edges from 
[image: image74.wmf]i

T

to its adjacent trees 
[image: image75.wmf]j

T

 , and is written by
[image: image76.wmf] ().

i

LT

 For each tree 
[image: image77.wmf]i

T

, if  
[image: image78.wmf]e

 is the minimum weight external edge connecting a vertex in 
[image: image79.wmf]i

T

to a vertex in 
[image: image80.wmf]j

T

, then, the edge 
[image: image81.wmf]e

 belongs to 
[image: image82.wmf] 

G

T

. If 
[image: image83.wmf]e

 = 
[image: image84.wmf](,)

uv

is an external edge from 
[image: image85.wmf]i

T

to 
[image: image86.wmf]j

T

 that is not a minimal weight external edge, then 
[image: image87.wmf]e

 is never an edge in
[image: image88.wmf] 

G

T

. 

5. The Parallel MST Algorithm 

At the beginning of the algorithm, we are using the function
[image: image89.wmf]()2log

fnm

=

éù

êú

; the function
[image: image90.wmf]()

fn

does not depend on the number of trees in each pass of the algorithm.  The study classifies the vertex set into a bounded number
[image: image91.wmf] O(n f(n)) 

 

of subsets 
[image: image92.wmf]1nf(n)

V(C),..., V(C)

such that the nodes of each subset are chose randomly. We can consider this as a simple and non-time-consuming  clustering  of the graph 
[image: image93.wmf]G

such that, there is no class contains another different class completely, in the same time may be there were some common elements between two or more classes. In addition, we can choose any fast graph clustering algorithm as a preprocessing step for our parallel minimum spanning tree algorithms. Let 
[image: image94.wmf]1()

(),..., ()

nfn

VCVC

are the names of the resulting classes from the clustering of the given graph. The algorithm has 
[image: image95.wmf]O (log  n/log log  n)

 passes and it runs in a way similar to the sequential algorithm of  M. Fredman and R. Tarjan [6].  In each pass, the algorithm reduces the number of trees 
[image: image96.wmf]t

 by the fraction
[image: image97.wmf]1()

fn

. In other words, consider the pass that begins with t trees and 
[image: image98.wmf]0

m

edges the number of trees 
[image: image99.wmf]0

t

 remaining after the pass satisfies
[image: image100.wmf]00

 2()

tmfn

£

. In the beginning each pass assigns all single trees white. Each pass creates an empty Fib-Heap for each single tree and inserts its linked list (the set of all best edges from
[image: image101.wmf] 

T

to its adjacent trees) as items in the heap with keys equal to the weight
[image: image102.wmf](

)

  

we

of the edge. It then chooses the edge with the minimum weight and begins from the other end point of that edge. The pass grows a single white tree only until its heap of incident edges exceeds a certain critical size and assigned it white. The algorithm continues in this way until there is no white tree remaining and then condenses every tree into a single super-vertex. The algorithm performs the condensing implicitly and then begins a new pass of the same kind over the condensed graph. After a sufficient number of passes, only one super-vertex will remain. By expanding the super-vertex back into trees then a minimum spanning tree is remaining.  The algorithm maintains a forest defined by the edges so far selected to be in the minimum spanning tree. It initializes the forest
[image: image103.wmf] 

T

such that it contains each of the n vertices of
[image: image104.wmf] 

G

as a one-vertex tree and maintains a key for measuring
[image: image105.wmf](

)

 

we

, which represents the tentative cost of incident edge
[image: image106.wmf] 

e

to
[image: image107.wmf] 

T

.

1. Form one trivial tree per each vertex
[image: image108.wmf] 

v

.

2.  for each tree 
[image: image109.wmf]  

vV

Î

do

    Set
[image: image110.wmf](

)

 

keyv

=¥

, and color each vertex
[image: image111.wmf] 

v

white.

3.  end for

Algorithm 1: Procedure Initialization
The processor assignment for initialization procedure is to provide one processor to each class. A processor colors the vertex white and sets the key of the vertex to ∞, and then this procedure takes 
[image: image112.wmf]O (log )

n

 time and 
[image: image113.wmf]O (())

nfn

 processors. The main procedure of the MST algorithm is described as follows: 

1. For 
[image: image114.wmf](

)

 

logn/loglogn 

times do

2.     Call Get-New-Tree (
[image: image115.wmf] 

T

) procedure.

3. end for
Algorithm 2: MST Main procedure

In the first pass of the algorithm the input old tree will be considered as a single vertex. For each class 
[image: image116.wmf] 

i

C

we assign one processor
[image: image117.wmf]i

P

and create the Fib-Heap
[image: image118.wmf]i

H

. For each vertex
[image: image119.wmf]ii

vC

Î

  insert the set of all edges incident with 
[image: image120.wmf]i

v

in the heap with a key equal the weight of every edge. Since it is not expected that all vertex degrees will equal one, then we repeat the following step for at most 
[image: image121.wmf]()

fn

times:  Find a minimum cost edge with exactly one endpoint in the selected set of vertices (sub-trees) and add it to the forest
[image: image122.wmf] 

G

T

; add its other endpoint to the selected set of vertices. After the above process, we get the first set
[image: image123.wmf] 

F

of nontrivial sub-trees of 
[image: image124.wmf] 

G

with two non-empty sets of edges. The first of those are the internal edges (contain at least one edge); the second includes the external edges, which will be at most equal to
[image: image125.wmf] 

z

, where 
[image: image126.wmf]z

 refers to the number of end vertices in the non-trivial tree; it will be determined later. The end vertices may be incident to external or internal edges. The forests 
[image: image127.wmf]1

12

{,,...,}

t

FTTT

=

of sub-trees of 
[image: image128.wmf]G

are called the old trees. These old trees will be the input to the next pass of the algorithm in order to grow them to get other new trees which will be the old ones for the following pass. The following is a description of a single pass (pass
[image: image129.wmf] 

i

) of the algorithm. The pass begins with a forest of previously grown trees (the old trees) defined by the edges so far added to the forest. The pass connects these old trees into new larger trees.  Start with the old trees by numbering it consecutively from one and assign to each vertex the number of the tree containing it. Each processor should keep its initial vertices. This allows us to refer to the trees by the numbers and directly access the old tree 
[image: image130.wmf](

)

 

Tv

that contains the vertex
[image: image131.wmf] 

v

. Next clean up the linked list of each old tree by removing every edge that connects any two vertices in the same old tree and all but a minimum-cost edge connecting each pair of old trees. A full description of the cleaning process using lexicographical sorting is given after Algorithm-3.  After cleaning up construct a new edge list for each old tree. However since every old tree and all vertex incidents with its internal edges have the same number and are sorted lexicographically according to their end point then we can in constant time merge the linked list of all vertices which are contained in the current grown tree. The linked lists of the old trees are merged into a single list; the time does not depend on the length of the list. We use a technique introduced by Tarjan and Vishkin [5] and Chong, Han and Lam [13]. The algorithm guarantees that the merging process will not fail because all the edges of 
[image: image132.wmf]i

T

 (or its mate) are included in the corresponding linked list. In order to finish the growth process empty the heap and set the keys of all old trees with key equals to infinity.

1. Number the old trees consecutively starting from one and assign to each vertex the number of the tree that contains it.

2.  Prune the linked list of each old tree.

3. For each old tree construct a list of edges that have one endpoint in
[image: image133.wmf] 

T

.

4. Every processor Pi calls the Grow-Step ( 
[image: image134.wmf]T

) procedure.

5. Finish the growth step by emptying the heap and set
[image: image135.wmf](

)

 

keyT

=¥

.

Algorithm 3: Get-New-Tree (
[image: image136.wmf]T

)

(Step 2) Prune the linked list: Discard every edge that connects two vertices in the same old tree as follows. When the subroutine prune (step 2 in Algorithm 3) considers an edge with the same number for its both two endpoints, it assigns this edge an internal (dead). Afterward sort the edges (external edges) that connect different old trees lexicographically according to their endpoints. Sorting can be performed in parallel by using the Parallel Radix Sort algorithm as described earlier. The algorithm sorts
[image: image137.wmf]  

n

elements in
[image: image138.wmf](

)

 log  

On

time using 
[image: image139.wmf] ()

nfn

EREW PRAM processors. In the sorted list, all multiple edges should end up in a sequence. Then, we save for each sequence of multiple 
[image: image140.wmf](

)

, 

xy

edges the minimum weight while the remaining multiple ones are deleted.

 (Step 4) Grow Step:  In the Grow-Step procedure we maintain the set 
[image: image141.wmf] 

A

 of the vertices of the current tree
[image: image142.wmf] 

T

 that contains an old tree 
[image: image143.wmf] 

i

T

to be treated by processor
[image: image144.wmf] 

i

P

. The implementation assumes that graph
[image: image145.wmf] 

G

is represented by adjacency lists while the set of light edges
[image: image146.wmf](

)

 

T

e

, which are the edges that appear in the minimum spanning tree, is added consecutively to the forest 
[image: image147.wmf].

F


1. Create an empty Fib-Heap
[image: image148.wmf] 

H

.

2. Insert each 
[image: image149.wmf]’

Ts

edge into
[image: image150.wmf] 

H

with
[image: image151.wmf](

)

(

)

 

keyewe

=

.

3. Let 
[image: image152.wmf]AT

=


4.  while 
[image: image153.wmf] ()

Hfn

<

 or  the other end point of the edge belong to different class  do

5.  Repeat

6.     Delete min-weight edge 
[image: image154.wmf](

)

,

uv

from the heap
[image: image155.wmf] 

H


7.  until 
[image: image156.wmf]T

¢

 is not an element in 
[image: image157.wmf] 

A


8.     
[image: image158.wmf] A A {T}

¢

¬È


9.      Add 
[image: image159.wmf](

)

 , 

euv

=

to the forest  
[image: image160.wmf].

F


10.      if  
[image: image161.wmf]T

¢

  is white then

11.              Empty the heap

12.           Set key of the current tree equal to infinity.

13.       else     

14.    Insert each (
[image: image162.wmf]T

¢

)’s edges into the heap 
[image: image163.wmf] 

H

 with
[image: image164.wmf](

)

(

)

 

keyewe

=

.

15.       end if

16.   end while

17.   Mark the current tree in white.
Algorithm 4: Grow-Step (
[image: image165.wmf] 

T

)

Lemma 1.   The number of end vertices 
[image: image166.wmf] 

z

 in a tree 
[image: image167.wmf] 

T

with 
[image: image168.wmf]12

 {,,. . . ,} 

Tn

Vvvv

=

 equals

             
[image: image169.wmf]deg()  2

2(deg()2)

v

v

³

+-

å


Proof:
Suppose 
[image: image170.wmf]12

 {,,. . . ,} 

vvv

z

be the vertices which have degree equal one. While 
[image: image171.wmf]2

1

 {,,. . . ,} 

n

vvv

zz

++

have degree more than one,


[image: image172.wmf]1n

z

z+1

deg(v)+...+deg(v)+deg(v)+...+deg(v)=2n-2

.


[image: image173.wmf](

)

(

)

deg()  2

degv 2 

== 2n22n2

v

z

z

³

-

--+

+

å



[image: image174.wmf]deg()  3

deg()2.

2

v

v

z

³

-

=+

å


Note, that it is possible to internal edges to have incidents with some end vertices of
[image: image175.wmf] 

T

. Consequently the number of all external edges is at most equal to
[image: image176.wmf] 

z

. This can be explained by the next lemma.

Lemma 2.   The number of the external edges in a non-trivial tree
[image: image177.wmf] 

T

is 
[image: image178.wmf]z

<
[image: image179.wmf](

)

22/

rkr

-


Proof:
Suppose that tree 
[image: image180.wmf] 

T

 has the vertex set 
[image: image181.wmf]T

V

and the edge set 
[image: image182.wmf]T

E

 and that the cardinality of its vertices is denoted 
[image: image183.wmf] 

T

n

while the cardinality of its edge set is denoted
[image: image184.wmf] 

T

m

. If T0 is the first old tree among those making up 
[image: image185.wmf] 

T

and it is placed in the heap then
[image: image186.wmf]0

 

T

will keep growing until the heap reaches size
[image: image187.wmf]()

fn

. At that time the current tree
[image: image188.wmf] 

T

¢

 that contains
[image: image189.wmf]0

 

T

 will have more than
[image: image190.wmf]()

fn

incident edges. Other trees may later become connected to 
[image: image191.wmf] 

T

¢

causing some of these incident edges to have their endpoints in the final tree
[image: image192.wmf] 

T

. According to that, after the completion of the pass each tree
[image: image193.wmf] 

T

will have more than
[image: image194.wmf]()

fn

edges with at least one endpoint in
[image: image195.wmf] 

T

. This implies that 


[image: image196.wmf]()

deg() 2()

vVT

vfn

Î

³

å


 If the degree of each vertex in 
[image: image197.wmf] 

T

 has an upper bound r  then 

  
[image: image198.wmf]T

rn>2f(n)

                                         (1)                  
 
[image: image199.wmf](

)

(

)

2(-)  2

(2)

               

TT

T

rnrn

rn

zz

z

-£-

-

<

<

.            (2)

                                                         
[image: image200.wmf] 

  2()

T

rnfn

>


From the two inequalities (1) and (2) and by dividing them, we find the relation between the size of the edge list for
[image: image201.wmf] 

T

and 
[image: image202.wmf]()

fn

 is 
[image: image203.wmf](

)

/2() 2/

fnrr

z

£-

. Then the number of external edges for each tree
[image: image204.wmf] 

T

is less than 
[image: image205.wmf](

)

z=Of(n).


6. The work and the running time for a pass

The running time of step-1 depends on the number of vertices in each class; this number is at most O(
[image: image206.wmf]logn

) vertex.  So this step can be implemented to run in O( 
[image: image207.wmf]log

n

)time using 
[image: image208.wmf] /()

nfn

processors. The running time of step-2 depends on the number of the external edges, which is greater than the size of the linked list of the tree. So the external edges has been  sorted in a lexicographic order (the linked list of the tree) in parallel by using the Parallel Radix Sort algorithm as was described in problem 4.16 page 189 [11]. Since the number of the external edges in a non-trivial tree 
[image: image209.wmf] 

T

 is 
[image: image210.wmf](

)

O()

fn

z

=

according to Lemma (2). The algorithm was used here to sort at most 
[image: image211.wmf] /()

nfn

 times 
[image: image212.wmf]z

edges in O (
[image: image213.wmf]log

n

) time using 
[image: image214.wmf] /()

nfn

EREW PRAM processors. Step-3 has been implemented to run in 
[image: image215.wmf](

)

 Olog  

n

time using 
[image: image216.wmf] /()

nfn

processors.  To analyze the running time of Step-4, we need to determine the upper bound of the size of the edge list for each tree
[image: image217.wmf] 

T

after the pass. Lemma (2) is the key to the complexity analysis. It gives the upper bound of the adjacency list (and the linked list) of each tree
[image: image218.wmf] 

T

so as to minimize the running time of pruning the adjacency list of
[image: image219.wmf] 

T

. At the same time, the lemma guarantees that every pass creates a new big tree by replacing the old trees 
[image: image220.wmf]1

{,,. . . ,}

iij

TTT

+

 by their union where 
[image: image221.wmf]  

ij

<

is the smallest index such that the size of the associated heap
[image: image222.wmf]  

H

is less than or equal to critical size
[image: image223.wmf]()

fn

. The result of the above lemma implies that every pass grows a single tree
[image: image224.wmf] 

T

by absorbing the old trees one by one, so we can determine the running time required to grow a new tree. It needs at most
[image: image225.wmf] 

r

delete-minimum operations, each on a heap of size 
[image: image226.wmf]()

fn

or smaller. Then the total time Step-4 procedure is O(
[image: image227.wmf]log()

rfn

) time, using at most 
[image: image228.wmf] /()

nfn

EREW PRAM processors.  Depending on the maximum number of vertices in each class, Step-5 takes O (
[image: image229.wmf]log

n

) running time lass using 
[image: image230.wmf] /()

nfn

processors. The running time per pass is O (
[image: image231.wmf]log

n

)running time using
[image: image232.wmf] /()log

nfnnn

=

 processors. 
Lemma 3    The algorithm terminates after no more than O (
[image: image233.wmf] logloglog

mm

) passes.
Proof : 

 Since each of the m edges has only two endpoints in the given graph 
[image: image234.wmf]G

 then the number of trees remaining after the first pass is at most
[image: image235.wmf] 2 /()

mfn

. For a pass
[image: image236.wmf] 

i

, which begins with t trees and
[image: image237.wmf] m< m

¢

edges (some edges may have been discarded), after i passes the number of remaining trees is at most
[image: image238.wmf] 2/(())

ii

mfn

, where
[image: image239.wmf]()2log

fnm

=

éù

êú

.  Since the expected number of trees that are equal to one only occurs in the last pass then the number of passes is at most O(
[image: image240.wmf] logloglog

mm

)□

7. SUMMARIES

This paper presented a new deterministic parallel algorithm on EREW PRAM. The study used the function
[image: image241.wmf]()

fn

  to control the number of processors. In the case
[image: image242.wmf]()1

fn

=

; the proposed parallel algorithm has the same running time and the same number of processor as the previous best deterministic parallel minimum spanning tree algorithms, but our parallel algorithm is the simplest one. If the study used the function
[image: image243.wmf]f(n)=O (logn)

 the number of processors reduced by the fraction
[image: image244.wmf]1log

n

, and compared with the previous results the work of our parallel algorithm reduced by the fraction O (
[image: image245.wmf]1loglog

n

), and it is O (
[image: image246.wmf]logloglog

nnn

) on EREWPRAM model. 

 References

 [1] D. H. Chandra and D. V. Sarwate. Computing connected components on parallel computers. Communications of ACM, 22:461–464, 1979.

[2] David A.Bader and Guojing Cong” A fast, parallel spanning tree algorithm for symmetric multiprocessors (SMPs)” Journal of Parallel and Distributed Computing Volume 65, Issue 9 Pages: 994 - 1006 

[3] J.Lam, F. Chin, and I. Chen “Efficient parallel algorithms for some graph problems” Communications of the ACM, 25(9):659–665, 1982.

[4] Y. Shloach and U. Vishkin. An o(log n) parallel connectivity algorithm. J. of Algorithms, 3:57–67, 1982.
[5] R. E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM Journal of COMPUT,14(4):863–874, 1985.

[6] R. E. Tarjan and M. L.Fredman. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.

[7] R. Cole and U. Vishkin. Approximate parallel scheduling: Applications to logarithmic-time optimal parallel graph algorithms. Information and computation, 92(1):1–47, 1991.

[8] R. Cole, R. E. Tarjan, and P. N. Klein. A linear-work parallel algorithm for finding minimum spanning trees. 6th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 11–15, 1994.

[9] D. R. Karger, R. Tarjan, and P.  Klein.  A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM, 42:321–328, 1995.

[10] R. Cole, R. E. Tarjan, and P. N. Klein. Finding minimum spanning forests in logarithmic time and linear work using random sampling. In Proc. SPAA ’96’, pages 243–250, 1996.

[11] S. G. Akl. Parallel Computation: Models and methods, pages 7, 189. Alan Apt, 1997.
 [12] K. W. Chong, T. W. Lam, and Y. Han. On the parallel time complexity of undirected connectivity and minimum spanning trees. SODA: ACMSIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete Algorithms), pages 243–250, 1999.

[13] K. W. Chong, T. W. Lam, and Y. Han. Concurrent threads and optimal parallel minimum spanning trees algorithm. Journal of the ACM, 48(2):297–323, March 2001.

[14] M. Moussa. Parallel algorithms for the construction of special subgraphs. Ph.D Fak. f. Informatik, Karlsruhe University,2006
Authors

	[image: image247.jpg]15-06-2011





	1Mahmoud Moussa  received the B.Sc. (Mathematics) the M.Sc. (Pure Mathematics) degree from Benha University, Benha, Egypt in 1993, 1999 respectively. Also, he received Ph.D. ( Computer Science) degree from Faculty of Information, University of Karlsruhe, Karlsruhe  City, Germany, in 2005. He is a University assistant Prof. of Computer Science with the Benha University, Faculty of Computer and Informatics, Department of Computer Science. His current research is Parallel Programming, linear programming and Graph Theory.


	[image: image248.png]




	2El-Sayed Badr  received the B.Sc. (Mathematics) the M.Sc. (Pure Mathematics) degree from Benha University, Benha, Egypt in 1994, 2000 respectively. Also, he received Ph.D. ( Computer Science) degree from Department of Applied Informatics, Macedonia University, Thessaloniki, Greece, in 2006. He is a University lecturer of Computer Science with the Benha University, Faculty of Computer and Informatics, Department of Scientific Computing. His current research is Parallel Programming, linear programming and Graph Theory.


1

_1425381058.unknown

_1425381929.unknown

_1425382524.unknown

_1425382800.unknown

_1425383048.unknown

_1425383135.unknown

_1425383172.unknown

_1425383206.unknown

_1425383235.unknown

_1425383411.unknown

_1425383227.unknown

_1425383191.unknown

_1425383198.unknown

_1425383182.unknown

_1425383155.unknown

_1425383164.unknown

_1425383144.unknown

_1425383075.unknown

_1425383086.unknown

_1425383057.unknown

_1425382838.unknown

_1425382983.unknown

_1425383023.unknown

_1425383037.unknown

_1425382857.unknown

_1425382815.unknown

_1425382824.unknown

_1425382807.unknown

_1425382712.unknown

_1425382767.unknown

_1425382786.unknown

_1425382793.unknown

_1425382774.unknown

_1425382728.unknown

_1425382759.unknown

_1425382720.unknown

_1425382674.unknown

_1425382694.unknown

_1425382704.unknown

_1425382685.unknown

_1425382626.unknown

_1425382636.unknown

_1425382609.unknown

_1425382135.unknown

_1425382251.unknown

_1425382419.unknown

_1425382486.unknown

_1425382510.unknown

_1425382478.unknown

_1425382396.unknown

_1425382397.unknown

_1425382262.unknown

_1425382395.unknown

_1425382169.unknown

_1425382186.unknown

_1425382193.unknown

_1425382177.unknown

_1425382152.unknown

_1425382161.unknown

_1425382142.unknown

_1425382069.unknown

_1425382102.unknown

_1425382119.unknown

_1425382127.unknown

_1425382111.unknown

_1425382088.unknown

_1425382095.unknown

_1425382080.unknown

_1425382032.unknown

_1425382053.unknown

_1425382061.unknown

_1425382044.unknown

_1425381963.unknown

_1425381994.unknown

_1425382007.unknown

_1425381937.unknown

_1425381511.unknown

_1425381761.unknown

_1425381845.unknown

_1425381891.unknown

_1425381908.unknown

_1425381922.unknown

_1425381900.unknown

_1425381871.unknown

_1425381882.unknown

_1425381855.unknown

_1425381795.unknown

_1425381813.unknown

_1425381834.unknown

_1425381805.unknown

_1425381777.unknown

_1425381786.unknown

_1425381770.unknown

_1425381608.unknown

_1425381721.unknown

_1425381738.unknown

_1425381752.unknown

_1425381730.unknown

_1425381632.unknown

_1425381712.unknown

_1425381616.unknown

_1425381549.unknown

_1425381571.unknown

_1425381579.unknown

_1425381562.unknown

_1425381532.unknown

_1425381539.unknown

_1425381520.unknown

_1425381265.unknown

_1425381394.unknown

_1425381456.unknown

_1425381478.unknown

_1425381496.unknown

_1425381470.unknown

_1425381438.unknown

_1425381448.unknown

_1425381416.unknown

_1425381318.unknown

_1425381346.unknown

_1425381360.unknown

_1425381332.unknown

_1425381299.unknown

_1425381309.unknown

_1425381266.unknown

_1425381129.unknown

_1425381176.unknown

_1425381263.unknown

_1425381264.unknown

_1425381261.unknown

_1425381262.unknown

_1425381187.unknown

_1425381155.unknown

_1425381165.unknown

_1425381138.unknown

_1425381093.unknown

_1425381112.unknown

_1425381121.unknown

_1425381102.unknown

_1425381073.unknown

_1425381084.unknown

_1425381065.unknown

_1425380768.unknown

_1425380913.unknown

_1425380986.unknown

_1425381020.unknown

_1425381041.unknown

_1425381049.unknown

_1425381031.unknown

_1425381002.unknown

_1425381010.unknown

_1425380994.unknown

_1425380947.unknown

_1425380968.unknown

_1425380977.unknown

_1425380957.unknown

_1425380930.unknown

_1425380939.unknown

_1425380920.unknown

_1425380843.unknown

_1425380880.unknown

_1425380895.unknown

_1425380904.unknown

_1425380887.unknown

_1425380860.unknown

_1425380871.unknown

_1425380852.unknown

_1425380808.unknown

_1425380824.unknown

_1425380832.unknown

_1425380817.unknown

_1425380791.unknown

_1425380800.unknown

_1425380779.unknown

_1425380444.unknown

_1425380663.unknown

_1425380699.unknown

_1425380717.unknown

_1425380760.unknown

_1425380709.unknown

_1425380680.unknown

_1425380690.unknown

_1425380672.unknown

_1425380623.unknown

_1425380646.unknown

_1425380654.unknown

_1425380632.unknown

_1425380531.unknown

_1425380552.unknown

_1425380476.unknown

_1425379785.unknown

_1425380060.unknown

_1425380358.unknown

_1425380422.unknown

_1425380433.unknown

_1425380373.unknown

_1425380160.unknown

_1425380284.unknown

_1425380298.unknown

_1425380205.unknown

_1425380093.unknown

_1425379828.unknown

_1425379861.unknown

_1425380037.unknown

_1425380047.unknown

_1425379889.unknown

_1425379898.unknown

_1425379906.unknown

_1425379875.unknown

_1425379845.unknown

_1425379853.unknown

_1425379837.unknown

_1425379803.unknown

_1425379812.unknown

_1425379793.unknown

_1425377957.unknown

_1425378790.unknown

_1425379534.unknown

_1425379765.unknown

_1425379774.unknown

_1425379608.unknown

_1425379626.unknown

_1425379749.unknown

_1425379616.unknown

_1425379586.unknown

_1425379451.unknown

_1425379514.unknown

_1425379523.unknown

_1425379483.unknown

_1425379467.unknown

_1425379415.unknown

_1425379442.unknown

_1425379405.unknown

_1425378522.unknown

_1425378780.unknown

_1425377968.unknown

_1425377889.unknown

_1425377916.unknown

_1425377944.unknown

_1425377905.unknown

_1425377290.unknown

_1425377386.unknown

_1425377391.unknown

_1425377422.unknown

_1425377366.unknown

_1425377289.unknown

_1412600898.unknown

