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Abstract

Computing the minimum spanning tree of the graph is one of the fundamental computational problems. In this paper, we present a new parallel algorithm for computing the minimum spanning tree of an undirected weighted graph with 
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vertices and 
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edges. This algorithm uses the cluster techniques to reduce the number of processors by fraction 
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and the parallel work by the fraction O (
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), where 
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is an arbitrary function.  In the case
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, the algorithm runs in logarithmic-time and use super linear work on EREWPRAM model. In general, the proposed algorithm is the simplest one.
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2. INTRODUCTION

The problem of determining a minimum spanning tree in parallel is the one major issue which has been the focus of much research. Here is a brief summary of related results. In 1979 D. H. Chandra, and D. V. Sarwate [1] presented a parallel deterministic algorithm for graphs with n vertices and m edges, that runs in O (
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) time using 
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 processors on the CREW model. In 1982, F. Chin, J. Lam, and I. Chen [3] gave a parallel deterministic algorithm, that runs in O (
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) time using 
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 processors Thus their algorithm achieves linear speed-up when the input graph is a complete graph. However, it is not very work-efficient for spare graphs. In 1982 Y. Shiloach and U. Vishkin [4] improved the result to O(
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) time and O(
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) processors on the CRCW model R. Cole and U. Vishkin [7] presented the best deterministic CRCW parallel MST and connectivity algorithms that require O(
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) time and 
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 processors. Recently in 1999 K. W. Chong, Yijie Han, and Tak W. Lam [12] presented a new approach for finding the minimum spanning trees that runs in O(
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) time using 
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processors on EREW PRAM. Thus their algorithm as R. Cole and U. Vishkin algorithm all use super-linear work. There are somewhat simpler logarithmic time linear expected work randomized minimum spanning tree algorithms, which have been successfully analyzed by R. Cole, P. N. Klein and R. E. Tarjan [10]. They improved the running time
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 of their previous work [8] to O (
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).  Their algorithms based on the sequential randomized linear-time algorithm to find MST which has been discovered by P. N. Klein, D. R. Karger and R. E. Tarjan [9].  In 2005 David A. Bader and Guojing Cong [2] gave a new practical parallel minimum spanning tree algorithm with implementation on SMPs. In 2005 Moussa [14] presented another algorithm for finding the minimum spanning trees that runs in   O (
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) time using 
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processors on EREW PRAM. In this paper we improve our result [14] by presenting a practical parallel algorithm on EREW PRAM model for computing MST by reducing the number of used processors. This algorithm can be has a practical application, where it can use a limited number of processors which does not depend on the number of vertices in the graph.  At the same time, our algorithm is considered the best one among all the parallel deterministic algorithms presented in this area because it is simpler and it resumes lower parallel cost. The remainder of this paper is organized as follows. In section 2 we choose the parallel model of computation. Section 3 gives some assumptions and definitions related with the minimum spanning trees.  In section 4, we present and discuss the parallel algorithm for solving MST problem. Section 5 discusses the parallel running time and the number of used processors. Section 6 is the conclusion of this research.

3. The Model

We let an EREW PRAM model employs 
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 processors where n is the number of vertices and m is the number of edges in the given graph
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 each processor able to perform the usual computation of a sequential machine using some fixed amount of local memory. The processors communicate through a shared global memory to which all are connected. The processor can access data computed by another processor and stored in the shared memory in constant time.

4. Assumptions and Definitions

Given a graph
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with
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vertices and m edges, we assume that the input graph G is given in the form of adjacency lists, where every vertex v has a linked list 
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of incident edges
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. For instance, if 
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 is an edge in
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, then 
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 appears in the adjacency list of  
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and
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. We call each copy of 
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 as the mate of the other. In order to differentiate between them we use the notations 
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and 
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vu

to indicate that the edge originates from u and v respectively. The weight of
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, which can be any integer value, is denoted
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. The proposed algorithm can be implemented for a graph in which the weights of all edges are distinct, or there are some different edges that have the same weights. We therefore say that the input graph
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 may have a unique minimum spanning tree, or more than one minimum spanning tree. The minimum spanning tree will be referred to as 
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 throughout this paper. We also assume that 
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 is an undirected connected graph and consists of only one component. Let 
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 be an arbitrary set of sub-trees of
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. If a tree 
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contains no edge incidents on a vertex
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, then 
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forms a tree. Consider any edge 
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 belong to 
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 then 
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is called an internal edge of
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; if only one vertex of {
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} belongs to
[image: image54.wmf]i

T

, then 
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 is called an external edge. 
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is said to be a 
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−forest if each tree 
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has at least 
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 vertices. The tree 
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is adjacent to 
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 if there is an edge 
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 For every tree 
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the linked list of 
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 is the set of all best edges from 
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to its adjacent trees 
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 , and is written by
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 For each tree 
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, if  
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 is the minimum weight external edge connecting a vertex in 
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to a vertex in 
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, then, the edge 
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 belongs to 
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. If 
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is an external edge from 
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to 
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 that is not a minimal weight external edge, then 
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 is never an edge in
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5. The Parallel MST Algorithm 

At the beginning of the algorithm, we are using the function
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; the function
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does not depend on the number of trees in each pass of the algorithm.  The study classifies the vertex set into a bounded number
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of subsets 
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such that the nodes of each subset are chose randomly. We can consider this as a simple and non-time-consuming  clustering  of the graph 
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such that, there is no class contains another different class completely, in the same time may be there were some common elements between two or more classes. In addition, we can choose any fast graph clustering algorithm as a preprocessing step for our parallel minimum spanning tree algorithms. Let 
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are the names of the resulting classes from the clustering of the given graph. The algorithm has 
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 passes and it runs in a way similar to the sequential algorithm of  M. Fredman and R. Tarjan [6].  In each pass, the algorithm reduces the number of trees 
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 by the fraction
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. In other words, consider the pass that begins with t trees and 
[image: image98.wmf]0

m

edges the number of trees 
[image: image99.wmf]0

t

 remaining after the pass satisfies
[image: image100.wmf]00

 2()

tmfn

£

. In the beginning each pass assigns all single trees white. Each pass creates an empty Fib-Heap for each single tree and inserts its linked list (the set of all best edges from
[image: image101.wmf] 

T

to its adjacent trees) as items in the heap with keys equal to the weight
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of the edge. It then chooses the edge with the minimum weight and begins from the other end point of that edge. The pass grows a single white tree only until its heap of incident edges exceeds a certain critical size and assigned it white. The algorithm continues in this way until there is no white tree remaining and then condenses every tree into a single super-vertex. The algorithm performs the condensing implicitly and then begins a new pass of the same kind over the condensed graph. After a sufficient number of passes, only one super-vertex will remain. By expanding the super-vertex back into trees then a minimum spanning tree is remaining.  The algorithm maintains a forest defined by the edges so far selected to be in the minimum spanning tree. It initializes the forest
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such that it contains each of the n vertices of
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as a one-vertex tree and maintains a key for measuring
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, which represents the tentative cost of incident edge
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1. Form one trivial tree per each vertex
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2.  for each tree 
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    Set
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, and color each vertex
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white.

3.  end for

Algorithm 1: Procedure Initialization
The processor assignment for initialization procedure is to provide one processor to each class. A processor colors the vertex white and sets the key of the vertex to ∞, and then this procedure takes 
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 time and 
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 processors. The main procedure of the MST algorithm is described as follows: 

1. For 
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times do

2.     Call Get-New-Tree (
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) procedure.

3. end for
Algorithm 2: MST Main procedure

In the first pass of the algorithm the input old tree will be considered as a single vertex. For each class 
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we assign one processor
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and create the Fib-Heap
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. For each vertex
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  insert the set of all edges incident with 
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in the heap with a key equal the weight of every edge. Since it is not expected that all vertex degrees will equal one, then we repeat the following step for at most 
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times:  Find a minimum cost edge with exactly one endpoint in the selected set of vertices (sub-trees) and add it to the forest
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; add its other endpoint to the selected set of vertices. After the above process, we get the first set
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of nontrivial sub-trees of 
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with two non-empty sets of edges. The first of those are the internal edges (contain at least one edge); the second includes the external edges, which will be at most equal to
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, where 
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 refers to the number of end vertices in the non-trivial tree; it will be determined later. The end vertices may be incident to external or internal edges. The forests 
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of sub-trees of 
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are called the old trees. These old trees will be the input to the next pass of the algorithm in order to grow them to get other new trees which will be the old ones for the following pass. The following is a description of a single pass (pass
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) of the algorithm. The pass begins with a forest of previously grown trees (the old trees) defined by the edges so far added to the forest. The pass connects these old trees into new larger trees.  Start with the old trees by numbering it consecutively from one and assign to each vertex the number of the tree containing it. Each processor should keep its initial vertices. This allows us to refer to the trees by the numbers and directly access the old tree 
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that contains the vertex
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v

. Next clean up the linked list of each old tree by removing every edge that connects any two vertices in the same old tree and all but a minimum-cost edge connecting each pair of old trees. A full description of the cleaning process using lexicographical sorting is given after Algorithm-3.  After cleaning up construct a new edge list for each old tree. However since every old tree and all vertex incidents with its internal edges have the same number and are sorted lexicographically according to their end point then we can in constant time merge the linked list of all vertices which are contained in the current grown tree. The linked lists of the old trees are merged into a single list; the time does not depend on the length of the list. We use a technique introduced by Tarjan and Vishkin [5] and Chong, Han and Lam [13]. The algorithm guarantees that the merging process will not fail because all the edges of 
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 (or its mate) are included in the corresponding linked list. In order to finish the growth process empty the heap and set the keys of all old trees with key equals to infinity.

1. Number the old trees consecutively starting from one and assign to each vertex the number of the tree that contains it.

2.  Prune the linked list of each old tree.

3. For each old tree construct a list of edges that have one endpoint in
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.

4. Every processor Pi calls the Grow-Step ( 
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) procedure.

5. Finish the growth step by emptying the heap and set
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Algorithm 3: Get-New-Tree (
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(Step 2) Prune the linked list: Discard every edge that connects two vertices in the same old tree as follows. When the subroutine prune (step 2 in Algorithm 3) considers an edge with the same number for its both two endpoints, it assigns this edge an internal (dead). Afterward sort the edges (external edges) that connect different old trees lexicographically according to their endpoints. Sorting can be performed in parallel by using the Parallel Radix Sort algorithm as described earlier. The algorithm sorts
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EREW PRAM processors. In the sorted list, all multiple edges should end up in a sequence. Then, we save for each sequence of multiple 
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 (Step 4) Grow Step:  In the Grow-Step procedure we maintain the set 
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 of the vertices of the current tree
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 that contains an old tree 
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to be treated by processor
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. The implementation assumes that graph
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is represented by adjacency lists while the set of light edges
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, which are the edges that appear in the minimum spanning tree, is added consecutively to the forest 
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1. Create an empty Fib-Heap
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2. Insert each 
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3. Let 
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4.  while 
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 or  the other end point of the edge belong to different class  do

5.  Repeat

6.     Delete min-weight edge 
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from the heap
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7.  until 
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9.      Add 
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to the forest  
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10.      if  
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  is white then

11.              Empty the heap

12.           Set key of the current tree equal to infinity.

13.       else     

14.    Insert each (
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)’s edges into the heap 
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 with
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15.       end if

16.   end while

17.   Mark the current tree in white.
Algorithm 4: Grow-Step (
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Lemma 1.   The number of end vertices 
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Proof:
Suppose 
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be the vertices which have degree equal one. While 
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have degree more than one,
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Note, that it is possible to internal edges to have incidents with some end vertices of
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. Consequently the number of all external edges is at most equal to
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Lemma 2.   The number of the external edges in a non-trivial tree
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Proof:
Suppose that tree 
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 has the vertex set 
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and the edge set 
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 and that the cardinality of its vertices is denoted 
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while the cardinality of its edge set is denoted
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will keep growing until the heap reaches size
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incident edges. Other trees may later become connected to 
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causing some of these incident edges to have their endpoints in the final tree
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 If the degree of each vertex in 
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From the two inequalities (1) and (2) and by dividing them, we find the relation between the size of the edge list for
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6. The work and the running time for a pass

The running time of step-1 depends on the number of vertices in each class; this number is at most O(
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processors. The running time of step-2 depends on the number of the external edges, which is greater than the size of the linked list of the tree. So the external edges has been  sorted in a lexicographic order (the linked list of the tree) in parallel by using the Parallel Radix Sort algorithm as was described in problem 4.16 page 189 [11]. Since the number of the external edges in a non-trivial tree 
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according to Lemma (2). The algorithm was used here to sort at most 
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processors.  To analyze the running time of Step-4, we need to determine the upper bound of the size of the edge list for each tree
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after the pass. Lemma (2) is the key to the complexity analysis. It gives the upper bound of the adjacency list (and the linked list) of each tree
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is the smallest index such that the size of the associated heap
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Lemma 3    The algorithm terminates after no more than O (
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) passes.
Proof : 

 Since each of the m edges has only two endpoints in the given graph 
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 then the number of trees remaining after the first pass is at most
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. For a pass
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edges (some edges may have been discarded), after i passes the number of remaining trees is at most
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.  Since the expected number of trees that are equal to one only occurs in the last pass then the number of passes is at most O(
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7. SUMMARIES

This paper presented a new deterministic parallel algorithm on EREW PRAM. The study used the function
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  to control the number of processors. In the case
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; the proposed parallel algorithm has the same running time and the same number of processor as the previous best deterministic parallel minimum spanning tree algorithms, but our parallel algorithm is the simplest one. If the study used the function
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 the number of processors reduced by the fraction
[image: image244.wmf]1log

n

, and compared with the previous results the work of our parallel algorithm reduced by the fraction O (
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), and it is O (
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